P and NP



We say a deterministic TM has time-complexity T(n) if for every
input w with length |w]| = n the TM halts (whether or not it accepts
w) after T(n) steps. Theclass Pis{L | Lis alanguage accepted by
some TM with polynomial time complexity}

We say that a non-deterministic TM has time-complexity T(n) if for
every input w with length n the TM halts after T(n) steps, in an
Accept state if the TM accepts w. The class VP is{L | Lis a
language accepted by some non-deterministic TM with polynomial
time complexity}



While you can ask if any language is in & or V& we are often
interested in algorithmic questions such as "Find the shortest path
from node g, to node q, in this weighted graph." That translates to a
P or V& question by looking at the language {g1110" | gis an
encoding of a weighted graph and the graph has a path of length n or
less from node g, to node q,}

Note that a non-deterministic TM can solve this by guessing the
sequence of nodes on the shortest path from q, to g, and then
verifying in polynomial time that these nodes do form a path from q,
to g, and that the sum of the lengths of the edges on this path is no
more than n.



Many people describe & as the set of problems that can be solved in
polynomial time while /& is the set of problems for which a
solution can be verified in polynomial time.

It is obvious that & is a subset of N&. Perhaps the most important
unsolved question in CSis: Is & = N&P? This question arises from
Cook's Theorem, which says that if one specific language Lis in &
then P=N&.



Let L be a language in N¥. We say L is NP-complete if for every
language A in NV& there is a polynomial time reduction of Ato L in
the sense that we can covert any string w in polynomial time to a
string w' so that wisin Aif and only if w'isin L. If Lis NP-complete
and Lis in &, then every language A in V& is also in ¥ and hence &=

NP,

We say a language L is NP-hard if every language A in V& reduces to
L. So to be NP-complete a language must be

a) In NP

b) NP-hard



Boolean expressions. We will use A, V, and ~ to represent the
Boolean operators and, or, and not.

Definition: A Boolean expression is
a) A variable that can have value T or F
b) eAf, eV T ~e, or(e) where e and f are Boolean expressions

For example, x A ~(y V z) is a Boolean expression



Given values of the variables we can find the value of this expression:
build a parse tree for it (linear time) and pass the Boolean values up
the tree from the leaves to the root:

N
<
A\



Given a Boolean expression we can find if there is a set of
assignments to its variables for which the expression evaluates to T.
We say such an expression is satisfiable. For example, we could build
a truth table for it:

X y Z XA~(yVz)
T T T F
T T F F
T F T F
T F F T
F T T F
F T F F
F F T F
F F F F




Unfortunately, a truth table with k variables has 2k lines so it can't be
completed in polynomial time.

SAT is the language of satisfiable Boolean expressions.

Ex: x A ~(y V z) is in SAT: take x=T, y=F, z=F
Ex: X A~y Aly V ~X) is not in SAT



Cook's Theorem (Stephen Cook, U. Toronto, 1971): SAT is NP-
complete.

It is easy to see that SAT is in N&: Guess the right values of the
variables and verify them by evaluating a parse tree for the
expression. This takes linear time.

To prove Cook's Theorem we need to show that every N/ problem
reduces in polynomial time to SAT.



Let L be any language in NP. This means there is a non-deterministic
TM M that accepts L and M halts on any input w in time p(|w|) for
some polynomial p.

To prove Cook's Theorem we will produce from M and w a Boolean
expression that is satisfiable if and only if M accepts w.

Suppose w is any string with |[w| =nand M is any TM. If M accepts w
there is a sequence of configurations o, a; ... o, SO that

a) a,isthe initial configuration for the computation of M on w

b) Each o, => .,

C) Oy IS @ configuration in an accept state.



We will create a Boolean expression B that is satisfiable if and only
if such a sequence of configurations is possible. So if SAT is in P we
can show Lisin P:

a) Start with a nondeterministic TM that accepts L

b) For any string w construct B in polynomial time

c) determine if B is in SAT in polynomial time

d) Bisin SAT ifand only if wisin L



Note that we need to construct B in polynomial time, so it is
important that |B| be a polynomial function of |w].

In k steps we can write at most |w|+k symbols on the tape so we'll
assume the non-blank portion of the tape is no longer than p(n).

Also, we 'll assume the TM runs exactly p(n) steps for any input w
with |w|=n



Here is some notation we'll use:

X; is the j* symbol of the it" configuration. If the 4™ configuration is
110,00 then X5, =1, X;,=1, X3,=0,, X3,=0, and X,,=0

For any tape symbol or state A, Y;,, is a Boolean variable whose
intuitive meaning is "X;==A"

We will assume the start state of any TM is q;.



The Boolean expression we will construct is B=SANAF where
* Ssays the first configuration is q,w (where q, is the start state of
the TM)
* N says each configuration is derived from the previous one.
e Fsaysthatin the p(n)t" configuration the TM is in a final state

S and F are easy; N takes some work.



Step 1: If input w is a,a,...a, then
S5 = Yooqr /A Yoza1 A Yozaz- AY

Onan

Step 2: Let qg;,..95 be all of the final states of M.
Let F; be Y, ...i This says the j™ symbol of the last configuration is gy,

Let F; be F;; V F, V.. V Fy This says the jth symbol of the last
configuration is a final state.

Finally, Fis Fq V F, V... V F, this says the TM accepts w.

Note that |Fj| is independent of w, so |S| and |F| are both O( p(n) )



Step 3: We only need N, which says that each configuration is
derived from the previous one. In fact, we'll make

N =Ny AN; A AN )

where N, says that configuration i+1 is derived from configuration i.



To make Ni we need two kinds of subexpressions:

A;; will say that the state symbol of the ith configuration is at position
j and also that the j-1°, jth, and j+15t symbols of the i+15t configuration
are correct for the corresponding transition of M.

B;; will say that either the state symbol of the ith configuration is at
position j-1 or j+1 (and so symbol jis covered by A;) or else position |
has a tape symbol that is copied correctly from configuration i to
configuration i+1.

Given these, Ni=(A;y V Bjg) A(A;; V Bjy) Ao A Aipin) V B‘p(”))



Let's pause for an example. Suppose the it" configuration is 010q,10
and M has transition 0(q,,1)=(q,,1,R). We want the i+1
configuration to be 0101q,0.

B., will say the initial O is copied correctly
B., will say the 1 is copied correctly

B, will say T
A.; will say 0g11 is changed to 0192
B.,, will say T

B.. will say the final O is copied correctly



To make Bij, let t,...t, be all of the tape symbols and q,..q,, all of the
states.

B = (Yig-1)g1 V Yig-ja2 Ver V Yigajgm) VVigenjqr V Yigerygz Ve V'Y

i(j+1)qm)
VI (Yir A Yienien) V Yio A Yianiea) Veor V(Y A Y]

Note that |Bij| has nothing to do with the input w.



A;; describes the legal transitions..
Suppose we have a move to the right: o(q,,a)=(q,,b,R)

If the it" configuration is ag.af3 with g, at position j, we want the
i+15t configuration to be abq,[3

The phrase of Aij for this is
P = Yiigs A Yigenya A Yiienip N Yie1)(j+1)at
ALYy A Yienien) Veor VY A Yisn)jnd ]



On the other hand suppose we have a move left: o(q,,a)=(q,,b,L)

If the ith configuration is acg.aP with g, at position j, we want the i+1°
configuration to be aqg,cbf3. The phrase of Aij for this is

P= Yiqu A Y(i+1)(j-1)qt A Yi(j+1)a A Y(i+1)(j+1)b
ALYy A Yienien) Veor VY A Yis)ind ]

If M has L transitions and p;; is the corresponding A;; phrase for
transition t then

Ai=An VA, V. VA,



This completes the construction. Note that this seamlessly ncorporates
the nondeterminism of the TM: SAT's question about whether
some assignment of variables satisfies B corresponds to the
nondeterministic question of whether there is some valid

sequence of configurations that gets to a terminal state.

Now, how bigisB? B=SANAF

S| =0(n)
FI =0(p(n))
N[ =0(p*n))

This completes the proof that SAT is NP-complete.



